Biology of high single doses of IORT: RBE, 5 R’s, and other biological aspects
نویسندگان
چکیده
Intraoperative radiotherapy differs from conventional, fractionated radiotherapy in several aspects that may influence its biological effect. The radiation quality influences the relative biologic effectiveness (RBE), and the role of the five R's of radiotherapy (reassortment, repair, reoxygenation, repopulation, radiosensitivity) is different. Furthermore, putative special biological effects and the small volume receiving a high single dose may be important. The present review focuses on RBE, repair, and repopulation, and gives an overview of the other factors that potentially contribute to the efficacy. The increased RBE should be taken into account for low-energy X-rays while evidence of RBE < 1 for high-energy electrons at higher doses is presented. Various evidence supports a hypothesis that saturation of the primary DNA double-strand break (DSB) repair mechanisms leads to increasing use of an error-prone backup repair system leading to genomic instability that may contribute to inactivate tumour cells at high single doses. Furthermore, the elimination of repopulation of residual tumour cells in the tumour bed implies that some patients are likely to have very few residual tumour cells which may be cured even by low doses to the tumour bed. The highly localised dose distribution of IORT has the potential to inactivate tumour cells while sparing normal tissue by minimising the volume exposed to high doses. Whether special effects of high single doses also contribute to the efficacy will require further experimental and clinical studies.
منابع مشابه
Comparison of Different Model Predictions on RBE in the Proton Therapy Technique Using the GATE Code
Recently, proton therapy is used as one of the effective methods for treating various types of cancer in clinical treatment. An appropriate formalism to obtain relative biological effectiveness values for treatment planning studies is needed in this hadrontherapy technique. Hereby, the quantity of biological dose, instead of using the physical doses, is introduced to evaluate the biological eff...
متن کاملEvaluation of variable relative biological effectiveness and the creation of homogenous biological dose in the tumor region in helium ion radiation to the V79 cell line
In radiation therapy, ions heavier than proton have more biological advantages than a proton beam. Recently, ion helium has been considered due to high linear energy transfer (LET) to the medium and a higher relative biological effect (RBE). To design the spread-out Bragg peak (SOBP) of biological dose for radiation with any type of ion, we need exact values of RBE, which is dependent to dose, ...
متن کاملبررسی پاسخ رده های سلولی مختلف به میدان تابشی آمیخته حاصل از پرتودهی با یون هلیوم
Introdution: A careful study of the physical and biological properties of helium ion radiation on the various cell lines is essential for the treatment planning. In this study, the biological response of several different cell lines has been investigated in 4He ions. Methods: Physical dose profiles and Linear Energy Transfer (LET) calculations were performed using the Monte Carlo Geant4 code. ...
متن کاملRadiobiological aspects of intraoperative radiotherapy (IORT) with isotropic low-energy X rays for early-stage breast cancer.
The purpose of this study was to model the distribution of biological effect around a miniature isotropic X-ray source incorporating spherical applicators for single-dose or hypo-fractionated partial-breast intraoperative radiotherapy. A modification of the linear-quadratic formalism was used to calculate the relative biological effectiveness (RBE) of 50 kV X rays as a function of dose and irra...
متن کاملRBE vs. dose for low doses of high-let radiations.
According to track theory, the relative biological effectiveness (RBE) of high linear energy transfer (LET) radiations varies with cellular radiosensitivity parameters and the radiation environment. Of special interest is that the RBE varies as the dose of high-LET radiation to the power (1/m - 1) where m is the "target number" parameter, which varies from 2-4 in different cell lines. This appl...
متن کامل